library(dplyr);
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(boot);
library(broom);
library(knitr);
library(ggplot2);
data <- read.csv("analysis/data.csv", comment.char ="#");
data[data=="true"] <- 1;
data[data=="false"] <- 0;
data <- transform(data, wasSuccessful = as.numeric(wasSuccessful)
,HLO0 = HLO0 / 1000
,HLO1 = HLO1 / 1000
,HLO2 = HLO2 / 1000
,HLO3 = HLO3 / 1000
,HLO4 = HLO4 / 1000
,HLO5 = HLO5 / 1000
,HLO6 = HLO6 / 1000
,HLO7 = HLO7 / 1000
)
boot_mean <- function(original_vector, resample_vector) {
mean(original_vector[resample_vector])
}
nonnegative <- Vectorize(function(x) {x >= 0})
wiltest <- function(a, b) {
return(wilcox.test(Filter(nonnegative, a), Filter(nonnegative, b), paired=FALSE))
}
questions<-list(
"I had to re-read instructions to understand what I needed to do",
"It was always clear to me what I was supposed to do.",
"Overall, the system gave me good instructions.",
"The system gave me useful feedback about my progress.",
"The system was really verbose and explained things that were already clear to me.",
"The system's instructions came too early.",
"The system's instructions came too late."
)
note that timings are probably highly correlated with successfulness here!
data
feats <- list("timeToSuccess", "numMistakes", "Question0", "Question1", "Question2", "Question3", "Question4", "Question5", "Question6")
architects <- list("BLOCK", "MEDIUM", "HIGHLEVEL")
bridgetableall<-data.frame(matrix(nrow=length(feats), ncol=3))
colnames(bridgetableall) <- architects
row.names(bridgetableall) <- feats
housetableall<-data.frame(matrix(nrow=length(feats), ncol=3))
colnames(housetableall) <- architects
row.names(housetableall) <- feats
for (scen in list("house", "bridge")) {
cat('\n\n##' , scen , '\n\n')
for (q in list("wasSuccessful", "numMistakes", "Question0", "Question1", "Question2", "Question3", "Question4", "Question5", "Question6")) {
cat('\n\n###', q, '\n')
for (arch in list("BLOCK", "MEDIUM", "HIGHLEVEL")) {
cat('\n####', arch, '\n\n')
nam <- paste("succ",scen,arch, sep="")
assign(nam, data %>% filter(scenario == scen) %>% filter(architect == paste("SimpleArchitect-",arch, sep="")), envir = .GlobalEnv)
dset <- Filter(function(x) {x >= 0}, get(nam)[,c(q)])
# hist(dset)
cat('\n\n')
mean_results <- boot(dset, boot_mean, R = 20000);
print(boot.ci(mean_results, type="bca"))
cat('\n\n')
print(kable(tidy(summary(dset)), align="llllll" ))
if (scen == "house") {
housetableall[q, arch] <- mean(dset)[1]
} else {
bridgetableall[q, arch] <- mean(dset)[1]
}
}
}
}
1 “All values of t are equal to 1 Cannot calculate confidence intervals” NULL
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
## Warning in norm.inter(t, adj.alpha): extreme order statistics used as endpoints
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 0.6667, 1.0000 )
Calculations and Intervals on Original Scale Warning : BCa Intervals used Extreme Quantiles Some BCa intervals may be unstable
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 1 | 1 | 0.952381 | 1 | 1 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 0.5384, 0.9444 )
Calculations and Intervals on Original Scale Some BCa intervals may be unstable
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 1 | 1 | 0.8888889 | 1 | 1 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.79, 18.42 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 7 | 13 | 14.47368 | 20 | 30 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (16.95, 34.81 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 13 | 19 | 23.66667 | 28 | 83 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (24.61, 60.44 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
7 | 14.25 | 21 | 38.38889 | 53.75 | 126 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.211, 4.316 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3 | 4 | 3.894737 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.810, 4.619 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 4 | 5 | 4.333333 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.222, 4.833 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
3 | 4.25 | 5 | 4.666667 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.368, 3.211 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.842105 | 3 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.952, 2.667 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.333333 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.500, 2.389 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 1.944444 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.368, 3.474 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.947368 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.190, 3.143 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.714286 | 4 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.5, 2.5 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 2 | 2.75 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.368, 4.421 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 4.052632 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.286, 4.333 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 3.952381 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.333, 4.444 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 4.055556 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.842, 2.526 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.210526 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.286, 3.238 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.809524 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.222, 3.444 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2.5 | 2.833333 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.421, 3.684 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 3.157895 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.381, 3.381 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.952381 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.000, 3.944 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3 | 4 | 3.611111 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.105, 1.684 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.368421 | 1.5 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.714, 2.333 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.047619 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.222, 1.889 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.555556 | 2 | 3 |
## Warning in norm.inter(t, adj.alpha): extreme order statistics used as endpoints
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 0.6842, 1.0000 )
Calculations and Intervals on Original Scale Warning : BCa Intervals used Extreme Quantiles Some BCa intervals may be unstable
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 1 | 1 | 0.9473684 | 1 | 1 |
1 “All values of t are equal to 1 Cannot calculate confidence intervals” NULL
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 0.6190, 0.9524 )
Calculations and Intervals on Original Scale Some BCa intervals may be unstable
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 1 | 1 | 0.9047619 | 1 | 1 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (14.89, 42.88 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 6.5 | 18 | 23.89474 | 29 | 121 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.53, 34.68 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 5 | 10 | 18.57895 | 18.5 | 98 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (27.46, 55.95 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4 | 13 | 27 | 39.7619 | 65 | 117 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.368, 4.842 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4 | 4 | 5 | 4.68421 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.474, 4.421 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3.5 | 4 | 4.052632 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.286, 4.810 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
3 | 4 | 5 | 4.666667 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.842, 2.947 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.5 | 2 | 2.368421 | 3 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.737, 3.632 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 2.5 | 3 | 3.210526 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.524, 2.095 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 1.857143 | 2 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.789, 2.632 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.5 | 2 | 2.210526 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.842, 3.789 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 2 | 4 | 3.368421 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.952, 2.667 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.333333 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.421, 4.211 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3 | 4 | 3.894737 | 4.5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.105, 4.263 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3 | 4 | 3.789474 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.476, 4.429 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3 | 4 | 4.047619 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.737, 2.526 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.5 | 2 | 2.157895 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.316, 3.316 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.842105 | 3.5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.857, 2.857 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 2.333333 | 3 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.053, 4.158 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 3.789474 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.000, 3.895 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3 | 4 | 3.526316 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.524, 3.571 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 3.095238 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.158, 1.684 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.421053 | 2 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.368, 2.158 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 1.736842 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.714, 2.286 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.047619 | 3 | 3 |
# "HLO0", "HLO1", "HLO2",
feats <- list("timeToSuccess", "numMistakes", "HLO0", "HLO1", "HLO2", "Question0", "Question1", "Question2", "Question3", "Question4", "Question5", "Question6")
architects <- list("BLOCK", "MEDIUM", "HIGHLEVEL")
bridgetable<-data.frame(matrix(nrow=length(feats), ncol=3))
colnames(bridgetable) <- architects
row.names(bridgetable) <- feats
housetable<-data.frame(matrix(nrow=length(feats), ncol=3))
colnames(housetable) <- architects
row.names(housetable) <- feats
housetable["timeToSuccess", "BLOCK"] <- 1
succGames <- data %>% filter(wasSuccessful == 1);
for (scen in list("house", "bridge")) {
cat('\n\n##' , scen , '\n\n')
for (q in feats) {
cat('\n\n###', q, '\n')
for (arch in architects) {
cat('\n####', arch, '\n\n')
nam <- paste("succ",scen,arch, sep="")
assign(nam, succGames %>% filter(scenario == scen) %>% filter(architect == paste("SimpleArchitect-",arch, sep="")), envir = .GlobalEnv)
dset <- Filter(function(x) {x >= 0}, get(nam)[,c(q)])
# hist(dset)
cat('\n\n')
mean_results <- boot(dset, boot_mean, R = 20000);
print(boot.ci(mean_results, type="bca"))
cat('\n\n')
print(kable(tidy(summary(dset)), align="llllll" ))
if (scen == "house") {
housetable[q, arch] <- mean(dset)[1]
} else {
bridgetable[q, arch] <- mean(dset)[1]
}
}
}
}
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (152.6, 203.1 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
115 | 133.5 | 156 | 171.5789 | 191.5 | 332 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (195.4, 308.0 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
92 | 159.75 | 184 | 239.8 | 307 | 573 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (195.5, 304.2 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
120 | 154 | 195 | 244 | 310.25 | 461 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.74, 18.42 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 7 | 13 | 14.47368 | 20 | 30 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (16.50, 34.83 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 11.75 | 18 | 23.3 | 25 | 83 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (19.62, 51.25 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
7 | 13.25 | 21 | 29.5 | 26 | 120 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (46.10, 61.14 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
31.762 | 43.046 | 48.077 | 51.85579 | 53.4095 | 92.288 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (58.89, 77.87 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
31.058 | 51.0405 | 70.554 | 68.6423 | 83.092 | 109.01 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (40.17, 68.30 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
12.493 | 28.08125 | 46.0955 | 52.85106 | 71.4425 | 106.373 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (18.00, 34.65 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
9.448 | 14.468 | 17.767 | 23.22337 | 22.9275 | 78.25 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (11.65, 24.26 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
6.808 | 9.27775 | 10.9245 | 15.23425 | 14.517 | 59.804 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 8.09, 15.96 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4.684 | 6.5805 | 8.7005 | 10.30369 | 10.14575 | 34.4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.49, 16.02 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
5.653 | 8.302 | 11.75 | 12.71684 | 14.739 | 29.668 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 6.459, 11.789 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2.856 | 4.645 | 6.457 | 8.612632 | 11.07 | 23.296 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 5.355, 10.256 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2.995 | 4.60725 | 5.5575 | 6.728688 | 7.1595 | 20.752 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.211, 4.316 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3 | 4 | 3.894737 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.85, 4.65 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 4 | 5 | 4.4 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.125, 4.812 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
3 | 4 | 5 | 4.625 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.368, 3.211 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.842105 | 3 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.95, 2.70 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.35 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.500, 2.438 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 1.9375 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.368, 3.474 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.947368 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.1, 3.1 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.65 | 4 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.500, 2.562 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 2 | 2.25 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.368, 4.421 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 4.052632 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.2, 4.3 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3.75 | 4 | 3.9 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.188, 4.438 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3.75 | 4 | 4 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.842, 2.526 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.210526 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.35, 3.30 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.9 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.250, 3.562 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2.5 | 2.9375 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.421, 3.737 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 3.157895 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.40, 3.45 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 3 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.062, 4.062 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3.75 | 4 | 3.75 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.105, 1.684 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.368421 | 1.5 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.65, 2.30 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.75 | 2 | 2 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.188, 1.938 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.5625 | 2 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (154.7, 224.2 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
110 | 140 | 162 | 177 | 181.75 | 403 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (142.7, 226.5 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
84 | 110 | 156 | 172.5263 | 187.5 | 449 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (217.8, 343.8 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
76 | 165 | 267 | 275.4737 | 358 | 564 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (12.22, 28.50 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 6.25 | 14.5 | 18.5 | 26.5 | 67 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.63, 34.84 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
0 | 5 | 10 | 18.57895 | 18.5 | 98 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (24.21, 55.37 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4 | 11 | 26 | 36.89474 | 45.5 | 117 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 71.78, 100.49 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
43.523 | 62.70775 | 73.484 | 84.11461 | 105.2322 | 151.517 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 78.3, 164.1 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
34.858 | 61.8525 | 77.087 | 103.9274 | 104.8195 | 390.203 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 91.5, 191.5 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
27.914 | 49.0325 | 87.116 | 128.8877 | 181.817 | 446.516 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (40.50, 68.56 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
21.349 | 32.739 | 43.7105 | 49.37467 | 51.9295 | 140.503 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (36.96, 53.26 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
21.597 | 31.6015 | 39.588 | 44.34684 | 60.398 | 77.147 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 92.6, 189.7 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
30.751 | 64.0975 | 93.991 | 129.8736 | 136.484 | 393.192 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (24.55, 79.60 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
13.405 | 18.2395 | 21.7575 | 38.1605 | 29.312 | 215.785 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.73, 47.09 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
5.644 | 8.4235 | 10.59 | 18.44716 | 13.0765 | 143.999 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 9.58, 21.52 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4.943 | 7.108 | 9.24 | 13.30976 | 15.747 | 49.646 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.333, 4.833 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
4 | 4 | 5 | 4.666667 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.474, 4.421 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3.5 | 4 | 4.052632 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.263, 4.789 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
3 | 4 | 5 | 4.631579 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.833, 3.000 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.25 | 2 | 2.388889 | 3 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.737, 3.632 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 2.5 | 3 | 3.210526 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.579, 2.158 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.5 | 2 | 1.894737 | 2 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.833, 2.667 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.277778 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.842, 3.737 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 2 | 4 | 3.368421 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.947, 2.737 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 2 | 2.368421 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.444, 4.278 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3.25 | 4 | 3.944444 | 4.75 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.053, 4.263 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 3 | 4 | 3.789474 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.421, 4.474 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3 | 5 | 4.052632 | 5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.722, 2.611 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.25 | 2 | 2.166667 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.316, 3.316 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 2.842105 | 3.5 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.737, 2.632 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 2.210526 | 3 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.056, 4.167 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 4 | 4 | 3.777778 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 3.000, 3.895 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
2 | 3 | 4 | 3.526316 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.526, 3.579 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 2 | 3 | 3.105263 | 4 | 5 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.167, 1.722 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 1 | 1.444444 | 2 | 3 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.368, 2.105 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1 | 2 | 1.736842 | 2 | 4 |
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 1.684, 2.316 )
Calculations and Intervals on Original Scale
minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|
1 | 1.5 | 2 | 2.052632 | 3 | 3 |
low level faster than high level:
m1<-wiltest(succbridgeBLOCK$timeToSuccess, succbridgeHIGHLEVEL$timeToSuccess)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 101.5, p-value = 0.03601
## alternative hypothesis: true location shift is not equal to 0
medium faster than high level:
m1<-wiltest(succbridgeMEDIUM$timeToSuccess, succbridgeHIGHLEVEL$timeToSuccess)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 103, p-value = 0.02457
## alternative hypothesis: true location shift is not equal to 0
high level and block level seem to be similar-ish in “gave good instructions”
m1<-wiltest(succbridgeBLOCK$Question2, succbridgeHIGHLEVEL$Question2)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 163.5, p-value = 0.8222
## alternative hypothesis: true location shift is not equal to 0
medium preferred to block level:
m1<-wiltest(succbridgeMEDIUM$Question2, succbridgeBLOCK$Question2)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 261, p-value = 0.00464
## alternative hypothesis: true location shift is not equal to 0
medium preferred to high level:
m1<-wiltest(succbridgeMEDIUM$Question2, succbridgeHIGHLEVEL$Question2)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 268.5, p-value = 0.007185
## alternative hypothesis: true location shift is not equal to 0
Always clear what to do block vs medium:
m1<-wiltest(succbridgeBLOCK$Question1, succbridgeMEDIUM$Question1)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
print(m1)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 99.5, p-value = 0.0262
## alternative hypothesis: true location shift is not equal to 0
succbridgeMEDIUM$numBlocksDestroyed
## [1] 0 107 4 1 11 5 2 67 15 7 11 15 12 44 22 9 15 3 4
Bridge: railing high level slower than medium:
m1<-wiltest(succbridgeHIGHLEVEL$HLO1, succbridgeMEDIUM$HLO1)
print(m1)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 308, p-value = 9.132e-05
## alternative hypothesis: true location shift is not equal to 0
Bridge: railing 2 high level faster than block level:
m1<-wiltest(succbridgeBLOCK$HLO2[], succbridgeHIGHLEVEL$HLO2)
print(m1)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 270, p-value = 3.895e-05
## alternative hypothesis: true location shift is not equal to 0
high level less successful finish than medium level slightly non-significant:
fishertable <- data %>% filter(scenario=="bridge") %>% filter(architect != "SimpleArchitect-BLOCK" ) %>% group_by(architect) %>% summarise(
t=sum(wasSuccessful),
f=n()-sum(wasSuccessful)
)
fisher.test(data.matrix(fishertable))
house_hlo_speed_table <--data.frame(matrix(nrow=8, ncol=3))
colnames(house_hlo_speed_table) <- architects
# row.names(house_hlo_speed_table) <- feats
for (col in seq(0,7)) {
cat("\n\n## ")
cat(col)
cat("\n\n")
for (arch in list("BLOCK", "MEDIUM", "HIGHLEVEL")) {
nam <- paste("succhouse",arch, sep="")
cname <- paste("HLO",col, sep="")
cat("\n### ")
cat(arch)
cat("\n\n")
dset <- Filter(nonnegative, get(nam)[,c(cname)])
mean_results <- boot(dset, boot_mean, R = 20000);
print(summary(dset))
cat("\n\n")
house_hlo_speed_table [col+1, arch] <- mean(dset)[1]
print(boot.ci(mean_results, type="bca"))
}
}
Min. 1st Qu. Median Mean 3rd Qu. Max. 31.76 43.05 48.08 51.86 53.41 92.29
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (46.33, 61.41 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 31.06 51.04 70.55 68.64 83.09 109.01
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (59.07, 78.11 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 12.49 28.08 46.10 52.85 71.44 106.37
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (40.07, 68.21 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 9.448 14.468 17.767 23.223 22.927 78.250
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (17.90, 34.16 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 6.808 9.278 10.925 15.234 14.517 59.804
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (11.68, 24.12 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 4.684 6.580 8.700 10.304 10.146 34.400
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 8.09, 15.99 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 5.653 8.302 11.750 12.717 14.739 29.668
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (10.50, 16.09 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.856 4.645 6.457 8.613 11.070 23.296
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 6.482, 11.880 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.995 4.607 5.558 6.729 7.160 20.752
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 5.356, 10.091 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.791 7.294 10.099 9.407 10.783 16.870
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 8.135, 10.748 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.447 3.845 4.801 9.535 8.789 45.181
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 5.972, 17.232 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.855 3.862 4.333 5.772 7.768 12.901
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.448, 7.607 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 9.559 11.131 13.411 17.148 19.572 45.087
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (14.02, 22.65 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 16.48 21.60 33.04 42.73 40.15 174.19
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (32.25, 69.42 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.354 53.403 64.823 69.630 76.983 180.041
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (52.61, 96.08 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 7.259 11.620 14.240 35.538 41.601 146.846
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% (21.34, 62.05 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 8.144 14.829 38.612 66.921 64.100 318.298
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 38.20, 123.53 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 8.88 25.24 42.45 85.18 114.40 323.35
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 48.71, 151.35 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.128 3.900 5.150 8.985 10.423 34.393
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 6.235, 14.552 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.352 4.077 5.296 8.566 8.166 50.948
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 5.788, 17.441 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.009 3.002 3.833 7.874 5.851 44.995
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.112, 18.004 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.152 3.621 4.444 5.737 5.599 23.378
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.281, 10.026 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.347 3.431 3.797 13.942 4.787 106.980
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 4.89, 44.93 )
Calculations and Intervals on Original Scale
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.749 2.329 2.688 3.831 5.155 7.200
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 20000 bootstrap replicates
CALL : boot.ci(boot.out = mean_results, type = “bca”)
Intervals : Level BCa
95% ( 2.846, 5.201 )
Calculations and Intervals on Original Scale
block preferred over highlevel “gave good instructions”
wiltest(succhouseBLOCK$Question2, succhouseHIGHLEVEL$Question2)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 217, p-value = 0.02705
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$timeToSuccess, succhouseHIGHLEVEL$timeToSuccess)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 97.5, p-value = 0.07372
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$timeToSuccess, succhouseMEDIUM$timeToSuccess)
## Warning in wilcox.test.default(Filter(nonnegative, a), Filter(nonnegative, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 122.5, p-value = 0.05974
## alternative hypothesis: true location shift is not equal to 0
# significance tests for HLOs
wiltest(succhouseBLOCK$HLO0, succhouseHIGHLEVEL$HLO0)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 162, p-value = 0.7561
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO1, succhouseHIGHLEVEL$HLO1)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 273, p-value = 1.63e-05
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO2, succhouseHIGHLEVEL$HLO2)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 265, p-value = 7.427e-05
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO3, succhouseHIGHLEVEL$HLO3)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 240, p-value = 0.002906
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO4, succhouseHIGHLEVEL$HLO4)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 26, p-value = 5.603e-06
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO5, succhouseHIGHLEVEL$HLO5)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 100, p-value = 0.08826
## alternative hypothesis: true location shift is not equal to 0
wiltest(succhouseBLOCK$HLO6, succhouseHIGHLEVEL$HLO6)
##
## Wilcoxon rank sum exact test
##
## data: Filter(nonnegative, a) and Filter(nonnegative, b)
## W = 191, p-value = 0.0963
## alternative hypothesis: true location shift is not equal to 0
kable(bridgetableall, digits=2)
kable(housetableall, digits=2)
kable(bridgetable, digits=2)
BLOCK | MEDIUM | HIGHLEVEL | |
---|---|---|---|
timeToSuccess | 177.00 | 172.53 | 275.47 |
numMistakes | 18.50 | 18.58 | 36.89 |
HLO0 | 84.11 | 103.93 | 128.89 |
HLO1 | 49.37 | 44.35 | 129.87 |
HLO2 | 38.16 | 18.45 | 13.31 |
Question0 | 4.67 | 4.05 | 4.63 |
Question1 | 2.39 | 3.21 | 1.89 |
Question2 | 2.28 | 3.37 | 2.37 |
Question3 | 3.94 | 3.79 | 4.05 |
Question4 | 2.17 | 2.84 | 2.21 |
Question5 | 3.78 | 3.53 | 3.11 |
Question6 | 1.44 | 1.74 | 2.05 |
kable(housetable, digits=2)
BLOCK | MEDIUM | HIGHLEVEL | |
---|---|---|---|
timeToSuccess | 171.58 | 239.80 | 244.00 |
numMistakes | 14.47 | 23.30 | 29.50 |
HLO0 | 51.86 | 68.64 | 52.85 |
HLO1 | 23.22 | 15.23 | 10.30 |
HLO2 | 12.72 | 8.61 | 6.73 |
Question0 | 3.89 | 4.40 | 4.62 |
Question1 | 2.84 | 2.35 | 1.94 |
Question2 | 2.95 | 2.65 | 2.00 |
Question3 | 4.05 | 3.90 | 4.00 |
Question4 | 2.21 | 2.90 | 2.94 |
Question5 | 3.16 | 3.00 | 3.75 |
Question6 | 1.37 | 2.00 | 1.56 |
kable(house_hlo_speed_table, digits = 2)
BLOCK | MEDIUM | HIGHLEVEL |
---|---|---|
51.86 | 68.64 | 52.85 |
23.22 | 15.23 | 10.30 |
12.72 | 8.61 | 6.73 |
9.41 | 9.53 | 5.77 |
17.15 | 42.73 | 69.63 |
35.54 | 66.92 | 85.18 |
8.98 | 8.57 | 7.87 |
5.74 | 13.94 | 3.83 |